Write your name here Surname Other names		
Edexcel GCE	Centre Number	Candidate Number
Physics Advanced Subsidia Unit 2: Physics at V	•	
Wednesday 5 June 2013 Time: 1 hour 30 minute	•	Paper Reference 6PH02/01
You do not need any other	materials.	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- The list of data, formulae and relationships is printed at the end of this booklet.
- Candidates may use a scientific calculator.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

P41634A
©2013 Pearson Education Ltd.
1/1/1/1/

PEARSON

SECTION A

Answer ALL questions.

For questions 1–10, in Section A, select one answer from A to D and put a cross in the box \boxtimes . If you change your mind, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

- 1 Which of the following is a standing wave?
 - A light emitted as a line spectrum
 - **B** ripples on water from a stone thrown into a pond
 - C sound from an opera singer in a theatre
 - **D** vibrations on a violin string as it is played

(Total for Question 1 = 1 mark)

2 An electric motor with potential difference *V* and current *I* lifts a mass *m* through a height *h* in time *t* at a steady speed *v*.

The efficiency of the motor is given by

- \triangle A $\frac{1/2}{VIt}$
- \square B $\frac{VI}{mg}$
- \square C $\frac{VIt}{mv}$
- \square **D** $\frac{mgh}{VIt}$

(Total for Question 2 = 1 mark)

3 The diagram shows displacement-time graphs for two oscillations, X and Y.

displacement

Which of the following statements correctly describes their phase relationship?

- **A** X and Y are in antiphase
- **B** X and Y are in phase
- \square C X is $\pi/2$ radians ahead of Y
- \square **D** Y is $\pi/2$ radians ahead of X

(Total for Question 3 = 1 mark)

4 The diagram shows a current *I* flowing through a sample of material of length *l* and cross-sectional area *A*.

The drift velocity of the free electrons is v.

If the area and length are both doubled, but the current remains the same, the drift velocity will be

- $\mathbf{A} \cdot \mathbf{v} / 4$
- $\mathbf{B} \quad \mathbf{v} / 2$
- \square C 2v
- \square **D** 4v

(Total for Question 4 = 1 mark)

5 The diagrams show the motions of a source of sound, S, and an observer, O.

Which line of the table correctly shows the effect this relative motion has on the frequency of the sound heard by the observer.

	Motions of S and O	Frequency
	S O stationary	increased
	$\stackrel{S}{\longleftrightarrow}$ \longleftrightarrow $\stackrel{O}{\longleftrightarrow}$	decreased
⊠ C	$\stackrel{S}{\longleftarrow}$ $\stackrel{O}{\longleftarrow}$	decreased
⊠ D	S O O Stationary	increased

(Total for Question 5 = 1 mark)

6 The diagram shows five energy levels in an atom.

5 _____

3 _____

2 _____

Electromagnetic radiation is incident on the atom.

Which transition would be caused by the absorption of the lowest frequency of radiation?

- **A** 1 to 5
- **■ B** 1 to 2
- **◯** C 4 to 5
- **■ D** 5 to 4

(Total for Question 6 = 1 mark)

7 Light is shone perpendicularly onto a photovoltaic cell of area 0.01 m². In 60 seconds, the total energy falling on the cell is 3 J.

The radiation flux is

- **A** 18 000 W m⁻²
- **B** 5 W m⁻²
- **D** 0.0005 W m⁻²

(Total for Question 7 = 1 mark)

8 The diagram shows a ray of light incident upon the surface of a glass block.

air

Which line could correctly show the angle of incidence and the angle of refraction?

	Angle of incidence	Angle of refraction
□ A	33°	21°
⊠ B	33°	55°
⊠ C	57°	34°
⊠ D	57°	38°

(Total for Question 8 = 1 mark)

9 A current of 0.2 A flows through a lamp for 3 hours.

The total charge passing through the lamp in this time is

- **■ B** 600 C
- **■ D** 0.6 C

(Total for Question 9 = 1 mark)

10 The diagram shows a ray of white light striking a thin layer of oil on water. Light reflects from the upper and lower surfaces of the oil, so that two rays reach the eye of an observer. With the eye in different positions the observer sees different colours from the oil.

Which of the following phenomena is not involved in the production of the colours seen?

- A polarisation
- **B** reflection
- C refraction
- **D** superposition

(Total for Question 10 = 1 mark)

TOTAL FOR SECTION A = 10 MARKS

SECTION B

Answer ALL questions in the spaces pro	vided.
11 (a) Some radio signals have a frequency of 218.6 MHz.	
Calculate their wavelength.	(2)
Wavelength	=
(b) State what is meant by:	
(i) frequency	
	(1)
(ii) wavelength.	(1)
(Total for	Question 11 = 4 marks)

Ctata the a			
State the measurements y	you would take, the graph you etermine a value for the refr	ou would plot and how you	Į
would use the graph to u	etermine a value for the ferr	active mucx.	(3)
			(0)

(b) (i) State what is meant by critical angle.	(2)
(ii) Calculate the critical angle for light passing from water to air. refractive index of water = 1.33	
	(2)
Critical angle =	
(Total for Question)	on 12 — / marksj

13 A strain gauge measures changes in the resistance of a metal under strain to find the applied force. The kitchen balance in the photograph uses strain gauges to measure the weight of cooking ingredients.

A student tests this method by measuring the resistance of a wire before a force is applied and while it is under tension.

(a) Calculate the initial resistance of the wire.

length of wire = 1.0 m

cross sectional area of wire = 2.9×10^{-8} m²

resistivity of wire = $4.9 \times 10^{-7} \Omega \text{ m}$

(2)

Resistance of wire =

(b) The student applies a force to the wire and measures the new length. He calculate the increase in the resistance to be 0.035Ω . He measures the increase in resistance and finds it to be 0.070Ω .	
The student suggests that the difference between these two values is because the cross-sectional area of the wire changes under strain.	
Explain why a change in cross-sectional area would cause this difference.	(3)
(Total for Question 13 = 5 r	marks)

14	Films made to be watched in three dimensions (3D) are produced by projecting two slightly different images on to the screen, one to be seen by each eye.	
	In one technique the images are polarised. The viewers wear special glasses where the lenses are replaced by two separate plane polarising filters.	
	(a) Explain what is meant by plane polarised light.	(3)
	(b) The light from the screen reaching each eye passes through a different filter so each eye sees a different image. The filter for one eye has a plane of polarisation of 45° and the filter for the other eye has a plane of polarisation of 135°.Explain this choice of angles.	
		(2)

Suggest why this is the case.	
Suggest why this is the case.	(2)
d) 3D film viewing is no longer done with require the viewers to keep their heads e the head causes partial viewing of the less	exactly level for the whole film. Tilting of
Explain why one eye would see a faint in is tilted slightly.	mage intended for the other eye if the head
is titled slightly.	(2)
	(Total for Question 14 = 9 marks)

15	When the photoelectric effect was first observed in the nineteenth century, scientists could not explain it using the wave theory of light.	
	In 1905 Albert Einstein published a paper, for which he won a Nobel Prize, explaining the photoelectric effect by using a photon model of light, rather than a wave model.	
	(a) Explain what is meant by a photon.	(2)
		(2)
;	*(b) Explain why the following observations may be understood by using a photon model of light, rather than a wave model.	
	• Light above a certain frequency causes the emission of electrons from the surface of a metal. This emission occurs instantaneously.	
	• Light below a certain frequency will not result in the emission of electrons however long it illuminates the surface.	
		(5)

Threshold frequency =
ii) State the part of the electromagnetic spectrum to which radiation of this frequency belongs. (1)
ii) State the part of the electromagnetic spectrum to which radiation of this frequency belongs. (1)
ii) State the part of the electromagnetic spectrum to which radiation of this frequency belongs. (1)
ii) State the part of the electromagnetic spectrum to which radiation of this frequency belongs. (1)
ii) State the part of the electromagnetic spectrum to which radiation of this frequency belongs. (1)
ii) State the part of the electromagnetic spectrum to which radiation of this frequency belongs. (1)
ii) State the part of the electromagnetic spectrum to which radiation of this frequency belongs. (1)
frequency belongs. (1)
(1)
(Total for Question 15 = 11 marks)
(Total for Question 15 = 11 marks)

16	Ultrasonic testing can be used for detecting corrosion inside metal pipes.	
	(a) Describe how the ultrasound travels through a metal.	(3)
	(b) A steel pipe was manufactured with a wall thickness of 4.0 cm.	
	After several years of use this pipe is tested for corrosion. A pulse of ultrasound is sent into the steel from the outer surface and the reflection from the inner surface is detected after a time of 5.1×10^{-6} s.	
	Determine whether the steel is corroded at this point.	
	speed of sound in steel = 5900 m s^{-1}	(4)

Explain why pulses are used rather the the pulse affects the thickness of the pulse affects the pulse aff	an a continuous wave and how the duration of pipe wall that can be accurately measured.	3)
	(Total for Question 16 = 10 marks	s)
		- /

17 The diagram shows a circuit which may be used to find the emf \mathcal{E} and internal resistance r of a cell.

(a) As the resistance *R* of the variable resistor is varied, values of the current *I* in the circuit and the terminal potential difference *V* across the cell are recorded.

Sketch the graph of V against I and explain how it may be used to determine \mathcal{E} and r.

Potential difference, V/VO

Current, I/A

b) We usually assume that ammeters have negligible resistance and voltmeters have infinite resistance.	
The determination of \mathcal{E} and r is not affected by using an ammeter with non-negligible resistance but is affected by using a voltmeter with a low resistance.	
Explain why.	(4)
	(Total for Question 17 = 9 marks)

18 The photograph shows a piece of apparatus in which a mains light bulb and a torch bulb are both connected to the mains.

Students were surprised to see both bulbs shining normally when the apparatus was switched on.

It is impossible to tell from looking at the apparatus whether the bulbs are connected in series or in parallel.

To test this, the apparatus was switched off and the mains bulb was removed. When it was switched on again the torch bulb did not light up. When this was repeated, removing the torch bulb, the mains bulb did not light up.

When the circuit was tried again with both bulbs, they still operated normally.

(a) Complete the circuit diagram to show how the bulbs are connected and explain why they must be connected in this way and not the alternative.	(3)
Mains	
(b) The mains bulb is marked 40 W, 230 V.(i) Show that the current in the mains bulb is about 0.2 A when it is operating normally.	
	(2)
	(2)
(ii) Calculate the resistance of the mains bulb when it is operating normally.	(2)
(ii) Calculate the resistance of the mains bulb when it is operating normally.	
(ii) Calculate the resistance of the mains bulb when it is operating normally. Resistance =	(2)

Calculate the resistance of the torch bulb when it is operating norm	
	(2)
Resistance =	
(c) Explain, with reference to both current and potential difference, why is operate both bulbs at the same time from the same power supply.	it is possible to
	(2)

operating normally. Explain the effect on the resistances of the bulbs if they are operated at a much	
smaller current so that neither bulb lig	
	(4)
	(Total for Question 18 = 15 marks)
	TOTAL FOR SECTION $B = 70$ MARKS
	TOTAL FOR PAPER = 80 MARKS
	TOTAL FOR PAPER = 80 MARKS
	TOTAL FOR PAPER = 80 MARKS
	TOTAL FOR PAPER = 80 MARKS
	TOTAL FOR PAPER = 80 MARKS
	TOTAL FOR PAPER = 80 MARKS
	TOTAL FOR PAPER = 80 MARKS
	TOTAL FOR PAPER = 80 MARKS
	TOTAL FOR PAPER = 80 MARKS
	TOTAL FOR PAPER = 80 MARKS
	TOTAL FOR PAPER = 80 MARKS
	TOTAL FOR PAPER = 80 MARKS
	TOTAL FOR PAPER = 80 MARKS

List of data, formulae and relationships

Acceleration of free fall $g = 9.81 \text{ m s}^{-2}$ (close to Earth's surface)

Electron charge $e = -1.60 \times 10^{-19} \text{C}$

Electron mass $m_e = 9.11 \times 10^{-31} \text{kg}$

Electronvolt $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

Gravitational field strength $g = 9.81 \text{ N kg}^{-1}$ (close to Earth's surface)

Planck constant $h = 6.63 \times 10^{-34} \,\mathrm{J s}$ Speed of light in a vacuum $c = 3.00 \times 10^8 \,\mathrm{m \, s^{-1}}$

Unit 1

Mechanics

Kinematic equations of motion v = u + at

 $s = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2as$

Forces $\Sigma F = ma$

g = F/mW = mg

Work and energy $\Delta W = F \Delta s$

 $E_{\rm k} = \frac{1}{2}mv^2$

 $\Delta E_{\rm grav}^{\ \ \ \ \ \ \ } = mg\Delta h$

Materials

Stokes' law $F = 6\pi \eta r v$

Hooke's law $F = k\Delta x$

Density $\rho = m/V$

Pressure p = F/A

Young modulus $E = \sigma/\varepsilon$ where

Stress $\sigma = F/A$

Strain $\varepsilon = \Delta x/x$

Elastic strain energy $E_{\rm el} = \frac{1}{2}F\Delta x$

Unit 2

Waves

Wave speed
$$v = f\lambda$$

Refractive index
$$\mu_2 = \sin i / \sin r = v_1 / v_2$$

Electricity

Potential difference
$$V = W/Q$$

Resistance
$$R = V/I$$

Electrical power, energy and
$$P = VI$$
 efficiency $P = I^2 R$

$$P = I^{2}R$$

$$P = V^{2}/R$$

$$W = VIt$$

% efficiency =
$$\frac{\text{useful energy output}}{\text{total energy input}} \times 100$$

% efficiency =
$$\frac{\text{useful power output}}{\text{total power input}} \times 100$$

Resistivity
$$R = \rho l/A$$

Current
$$I = \Delta Q/\Delta t$$

$$I = nqvA$$

Resistors in series
$$R = R_1 + R_2 + R_3$$

Resistors in parallel
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

Quantum physics

Photon model
$$E = hf$$

Einstein's photoelectric
$$hf = \phi + \frac{1}{2}mv_{\text{max}}^2$$

equation

